

Synthesis of the Sd^a determinant and two analogous tetrasaccharides

Paul B. van Seeventer, Johannis P. Kamerling, Johannes F.G. Vliegenthart *

Bijvoet Center, Department of Bio-Organic Chemistry, Utrecht University, P.O. Box 80.075, NL-3508 TB Utrecht, The Netherlands

Received 5 November 1996; accepted 24 December 1996

Abstract

To contribute to the possibility of studying in greater detail the biological significance of Sda-containing glycans as occur in Tamm-Horsfall glycoprotein, the following three spacerlinked tetrasaccharides have been synthesized: the Sd^a determinant α -Neu p5Ac-(2 \rightarrow 3)-[β -D-GalpNAc- $(1 \rightarrow 4)$]- β -D-Galp- $(1 \rightarrow 4)$ - β -D-GlcpNAc- $(1 \rightarrow 0)$ (CH₂)₅NH₂ (1), the Gal-ana-O)(CH₂)₅NH₂ (2), and the GlcNAc-analogue α -Neu p5Ac-(2 \rightarrow 3)-[β -D-GlcpNAc-(1 \rightarrow 4)]- β -D-Galp- $(1 \rightarrow 4)$ - β -D-GlcpNAc- $(1 \rightarrow O)(CH_2)_5NH_2$ (3). The general trisaccharide acceptor 5-azidopentyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galactonon-2-ulopyranosylonate)- $(2 \rightarrow 3)$ -(2,6-di-O-benzyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -3,6-di-Obenzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside was prepared, using methyl (phenyl 5acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-D-galacto-non-2-ulopyranosid)onate as the sialyl donor. For the syntheses of 1, 2, and 3 the glycosyl donors 3,4,6-tri-Oacetyl-2-deoxy-2-phthalimido- α -D-galactopyranosyl bromide, 2,3,4,6-tetra-O-acetyl- α -Dgalactopyranosyl bromide, and 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl trichloroacetimidate, respectively, proved to be the most suitable. © 1997 Elsevier Science Ltd.

Keywords: Sd^a determinant; Tamm-Horsfall glycoprotein; Oligosaccharide, chemical synthesis; Sialylation

1. Introduction

Although the Sd^a determinant α -Neu p5Ac- $(2 \rightarrow 3)$ -[β -D-GalpNAc- $(1 \rightarrow 4)$]- β -D-Galp-($1 \rightarrow 4$)- β -D-GlcpNAc- $(1 \rightarrow R$ [1] was first discovered on human erythrocytes, and therefore termed a blood group antigen, Sd^a activity has also been detected abun-

human Tamm-Horsfall glycoprotein (TH-gp) [1],

dantly in stomach, kidney, and colon tissue [2,3]. A structurally related pentasaccharide, the Cad antigen

 α -Neu p5Ac-(2 \rightarrow 3)-[β -D-GalpNAc-(1 \rightarrow 4)]- β -D-

Galp-(1 \rightarrow 3)-[α -Neu p5Ac-(2 \rightarrow 6)]-D-GalpNAc, has been isolated in its reduced form from glycophorin A [4]. Moreover, a Sd^a-active ganglioside, carrying the typical Sd^a tetrasaccharide, was isolated from Cadpositive erythrocytes [5]. The Sd^a determinant is typically found as a terminal sequence in N-glycans of

^{*} Corresponding author.

which was also termed uromodulin [6]. TH-gp is a renal-specific phosphatidylinositol-anchored membrane protein, which is excreted in the urine after cleavage from the membrane (50–200 mg/day) [7]. The structures of sialylated as well as sulfated complex-type carbohydrate chains, originating from TH-gp isolated from the urine of one male donor, were elucidated [8]. In an earlier study [9], the presence of oligomannose-type glycans was also reported.

The physiological function of TH-gp is still unclear, as is the role of its glycans with the Sda determinant in particular. However, the binding of TH-gp to neutrophils was reported and a role as a ligand for neutrophil integrins was suggested [10], facilitating neutrophil migration across renal epithelium for example in the case of tubulointerstitial nephritis. TH-gp was also reported to display immunosuppressive properties via its glycans [11]. Therefore, it will be interesting to investigate the extent to which the immunosuppressive properties of TH-gp can be correlated to the Sd^a determinant. Probing for an immunosuppressive activity of Sda-active gangliosides is another interesting issue to be investigated, because immunosuppressivity has been reported for gangliosides with the α -Neu p5Ac-(2 \rightarrow 3)-[β -D-GalpNAc- $(1 \rightarrow 4)$]- β -D-Galp- $(1 \rightarrow 4)$ structural element. These glycolipids inhibited T cell proliferative antigen-specific responses in vitro [12] as well as in vivo [13].

TH-gp has been suggested to be involved in the prevention of urinary tract and urinary bladder infections by the inhibitory action of its glycans against the fimbriae-mediated adherence of *Escherichia coli* to uroepithelial cells [14,15]. The protective role of the Sd^a determinant, however, in the process of colonization of pathogenic bacteria and in the adherence of bacterial toxins in the urinary tract, urinary bladder, and intestines is still far from definitive.

To study in greater detail the biological significance of Sd^a-containing glycoconjugates, the tetrasaccharide glycosides 1, 2, and 3 with the general formula α -Neu p5Ac- $(2 \rightarrow 3)$ -[β -D-Hexp- $(1 \rightarrow 4)$]- β -D-Galp- $(1 \rightarrow 4)$ - β -D-Glc pNAc- $(1 \rightarrow 0)$ (CH $_2$) $_5$ NH $_2$ (Hex = GalNAc, Gal, or GlcNAc, respectively) were synthesized. These compounds are suitable for conjugation to a carrier by the presence of a 5-aminopentyl spacer, and are therefore useful for application in binding assays. Previously, the corresponding reducing form of 1 has been prepared by a chemo-enzymatic route using β -1,4-N-acetylgalactosaminyltransferase [16]. The syntheses of corresponding tetrasaccharide moieties with Gal(β 1-3)GalNAc [17]

or Gal(β 1-4)Glc [18] instead of Gal(β 1-4)GlcNAc at the reducing end have also been reported in its protected and free form, respectively. The carbohydrate moiety of 2 was found at the non-reducing end of glycoprotein-derived free oligosaccharides from the unfertilized eggs of *Tribolodon hakonesis* [19].

2. Results and discussion

As the general acceptor for the syntheses of the tetrasaccharide glycosides 1, 2, and 3, 5-azidopentyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-non-2-ulopyranosylonate)- $(2 \rightarrow 3)$ -(2,6-di-O-benzyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -Dglucopyranoside (19) was selected. As already shown in several earlier synthetic studies on gangliosides [20] for Gal-terminated oligosaccharide acceptors with free hydroxyl functions of different reactivity at C-3 and C-4 of Gal, the use of 5-azidopentyl (2,6-di-Obenzyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (13) would allow the regio- as well as the α -stereoselective sialylation with a thio-sialoside donor at HO-3', followed by the coupling with the respective GalNAc, Gal, and GlcNAc donors at HO-4'.

The synthesis of disaccharide derivative 13 involved the galactosylation of ethyl 3,6-di-O-benzyl-2-deoxy-2-phthalimido-1-thio-β-D-glucopyranoside [21] (4) with 2,3,4,6-tetra-O-acetyl- α -D-galactopyranosyl bromide (5) in dichloromethane-toluene at -40 °C via a silver triflate promoted reaction, affording 6 (87%) (Scheme 1). Zemplén deacetylation of 6 $(\rightarrow 7)$, followed by isopropylidenation using 2,2-dimethoxypropane and p-toluenesulfonic acid as catalyst, afforded the 6'-O-(1-methoxy-1-methylethyl)-3',4'-O-isopropylidene derivative 8, which was directly converted into the 3',4'-O-isopropylidene derivative 9 by treatment with aqueous trifluoroacetic acid in dichloromethane (\rightarrow 9, 74% from 6) [22]. The structure of 9 was confirmed by ¹H NMR spectroscopy of the corresponding 2',6'-di-O-acetyl derivative 10, obtained by O-acetylation of 9 with acetic anhydride-pyridine. Benzylation of 9, applying a standard procedure using benzyl bromide and sodium hydride as a base was unsuccessful, and therefore a milder procedure using benzyl bromide, potassium iodide, and silver(I) oxide [23] in N, N-dimethylformamide was chosen, giving 11 (96%). Compound 11 has been prepared via an alternative

$$\beta\text{-D-Hex-}(1 \longrightarrow 4) \longrightarrow \\$$

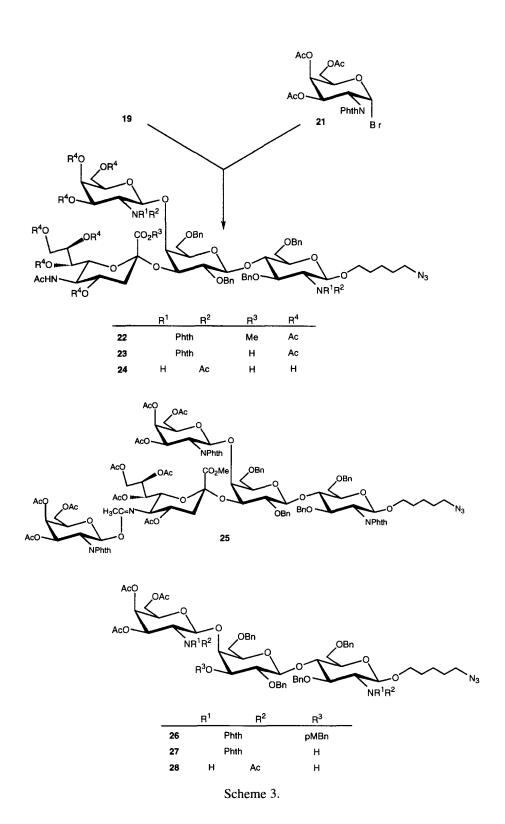
$$\alpha\text{-Neu}p5\text{Ac-}(2 \longrightarrow 3)\text{-}\beta\text{-D-Gal}p\text{-}(1 \longrightarrow 4)\text{-}\beta\text{-D-Glc}p\text{NAc-}(1 \longrightarrow O)(\text{CH}_2)_5\text{NH}_2$$

C(Me)₂OMe SEt н CMe₂ н CMe₂ 10 SE Ac Ac 11 SE Bn CMe₂ Bn 12 O(CH₂)₅N₃ Bn Bn O(CH₂)₅N₃ 13 Bn Bn

Scheme 1.

route by Spijker et al. [24], however, in a lower overall yield. The preparation of 5-azidopentanol (14) was performed by mono-benzoylation of 1,5-penta-

nediol, followed by reaction with hydrazoic acid in the presence of diethyl azodicarboxylate—triphenylphosphine via the Mitsunobu reaction [25], and debenzoylation (41%; overall). Then, coupling of 11 with 5-azidopentanol (14) by activation with N-iodosuccinimide (NIS) and a catalytic amount of triflic acid (TfOH) [26] in dichloromethane at 0 °C gave 12 (84%). Finally, de-isopropylidenation of 12 afforded disaccharide derivative 13 (91%).


For the synthesis of the trisaccharide derivative 19, methyl (phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-D-galacto-non-2-ulopyranosid)onate [27] (15) was prepared (Scheme 2). The α : β ratio of 15, being 1:8, was estimated from its ¹H NMR spectrum. The sialylation of 13 with 15 in acetonitrile-dichloromethane with NIS-TfOH as promoter system at -45 °C [28], afforded 19 (60%) and 8% of the corresponding β -anomer 19 β . The structure of 19 was confirmed by 1H NMR spectroscopy of the corresponding 4'-O-acetyl derivative **20**. Characteristic ¹H signals for **20** were found at δ 5.350 (dd, 1 H, $J_{6'',7''}$ 2.5 and $J_{7'',8''}$ 8.4 Hz, H-7"), in accordance with the empirical ¹H NMR rule ($\alpha J_{7.8}$ $\gg \beta J_{7.8}$) for the determination of the anomeric configuration of sialic acid derivatives [29], and at δ 5.037 (H-4'), indicating the newly formed glycosidic linkage to be α at O-3'. In parallel experiments two other sialic acid donors were tested. It turned out that the use of methyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-D-galacto-non-

Scheme 2.

2-ulopyranosid)onate [30] (16) in acetonitrile with NIS-TfOH as promoter system at -35 °C, afforded 19 in a yield of 35 and 8% of the corresponding β -anomer 19 β . Furthermore, the condensation of 13 with the sialyl diethylphosphite derivative [31] 17 in acetonitrile at -30 °C in the presence of trimethyl-

silyl triflate as a catalyst [31] gave 19 in a yield of only 25 and 8% of the corresponding β -anomer 19 β .

The synthesis of tetrasaccharide 1 was performed by condensation of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- α -D-galactopyranosyl bromide [32] (21) with 19 applying the inversed addition procedure

(IAP) [33] in toluene-acetonitrile with HgBr₂ as the promoter (Scheme 3). Besides the expected tetrasaccharide derivative 22 (31%), a by-product was obtained, which was identified by FABMS to be the complex imidate 25. A similar attack of a glycosyl donor on the amide-carbonyl function of a sialyl residue has been described in [17,34,35]. The hydrolysis of the imidate function in 25, using a catalytic amount of TfOH in dichloromethane-methanol, was unsuccessful. Condensation of 19 with ethyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-1-thio- β -D-galactopyranoside [36], using as a promoter system NIS-TfOH, or 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-B-D-galactopyranosyl trichloroacetimidate [37], using as a catalyst trimethylsilyl triflate, provided the tetrasaccharide derivative 22 in yields of only 16 and 19%, respectively. The conversion of 22 into 24 was performed by demethylation using LiI [38] in pyridine at 115 °C (\rightarrow 23, 75%), followed by dephthalovlation-deacetylation using methylamine in ethanol, and re-N-acetylation with acetic anhydride in methanol at 0 °C (\rightarrow 24, 95%). It should be mentioned, that the use of the generally successful dephthaloylating reagents hydrazine monohydrate and 1,2-diaminoethane [39] in this specific case resulted in complex reaction mixtures and in low yields of 24. Catalytic hydrogenation of 24 over 10% Pd-C in a solution of tert-butanol-water, which at the beginning of the incubation contained a small amount of ammonia for a cleaner reduction of the azide function [24], afforded 1 (54%) after lyophilization. As observed also by others [24,40], the behavior of an azide function during catalytic hydrogenolysis is not always clear and can give rise to a moderate yield. Moreover, an inhibitory effect of aliphatic amines on O-benzyl hydrogenolysis has been reported [41]. ¹H NMR and positive fast-atom-bombardment collisioninduced-decomposition tandem mass-spectrometric (FAB-CID-MS/MS) data of 1 are presented in Tables 1 and 2, respectively.

In view of the low yield obtained in the coupling reaction of 21 with 19, an alternative route for the

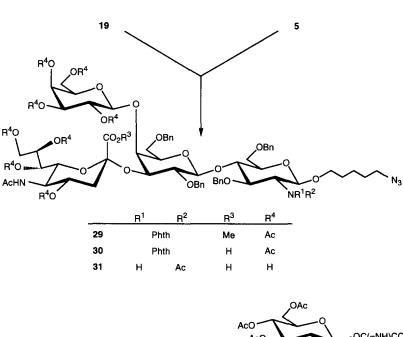
Table 1 500-MHz ¹H NMR data of tetrasaccharides 1–3 with the general formula α-Neu p5Ac- $(2 \rightarrow 3)$ -[β -D-Hex- $(1 \rightarrow 4)$]- β -D-Galp- $(1 \rightarrow 4)$ - β -D-GlcpNAc- $(1 \rightarrow O)$ (CH₂)₅NH₂

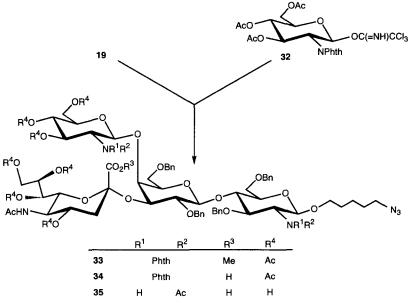
Residue	Proton (J)	$\delta \text{ (ppm)}/J \text{ (Hz)}$			
		1	2	3	
		Hex = GalpNAc	Hex = Galp	Hex = GlcpNAc	
β-d-GlcpNAc	H-1 $(J_{1,2})$	4.514 (8.1) a	4.517 (8.1) a	4.513 (8.1) ^a	
	$H-2(J_{2,3}^{1,2})$	3.71	3.71	3.72	
	H-3 $(J_{3,4}^{-3})$	n.d. ^b	3.58	3.51	
	NAc	2.031	2.029 °	2.029 °	
β -D-Gal p	H-1 $(J_{1,2})$	4.549 (8.0)	4.588 (7.8)	4.544 (8.1)	
	$H-2(J_{2,3}^{1,2})$	3.356 (9.8)	3.68 (10.0)	3.342 (9.8)	
	H-3 $(J_{3.4}^{2,3})$	4.149 (2.8)	4.216 (3.0)	4.146 (3.0)	
	$H-4(J_{4,5})$	4.113 (<1)	4.172 (< 1)	4.094 (< 1)	
α-Neu p5Ac	$H-3eq(J_{3eq,4})$	2.661 (4.6)	2.720 (4.9)	2.661 (4.7)	
	$(J_{3\mathrm{eq},3\mathrm{ax}})^{3\mathrm{eq},4}$	(-12.5)	(-12.7)	(-12.5)	
	$H-3ax(J_{3ax,4})$	1.908 (n.d.)	1.843 (n.d.)	1.917 (11.3)	
	Н-4	3.77	3.71	3.79	
	NAc	2.031	2.031 °	2.033 °	
Нех	H-1 $(J_{1,2})$	4.731 (8.6)	4.741 (8.1) ^d	4.795 (8.6)	
	$H-2(J_{2,3}^{1,2})$	3.91	3.492 (9.8)	3.73	
	H-3 $(J_{3,4}^{2,3})$	3.68	3.673 (3.9)	3.61	
	$H-4(J_{4,5}^{3,4})$	n.d.	3.908 (< 1)	n.d.	
	NAc	2.014	_	2.014	
5-Aminopentyl	$O(CH_2)_4CH_2NH_2$	2.951	2.954	2.959	

^a Virtual coupling to H-3.

 $^{^{}b}$ n.d. = not determined.

Assignments may have to be interchanged.


d Measured at 17 °C.


Table 2 Selected positive FAB-CID-MS/MS data for compounds 1, 2, and 3

Hex
$$Y_{2\beta}$$
 $Y_{2\beta}$ $Y_{2\beta}$

Compound Hex		m/z				
		$\overline{[M+H]^+}$	B_3	Υ _{2β}	$Y_{2\alpha}$	
1	β-D-GalpNAc	963.6	860.5	760.5	672.4	
2	β -D-Gal p	922.5	819.4	760.4	631.3	
3	β -D-Glc p NAc	963.6	860.5	760.5	672.5	

construction of 1 was evaluated by studying the coupling of various sialyl donors with potential asialo-trisaccharide acceptors such as 5-azidopentyl $(3,4,6-\text{tri-}O-\text{acetyl-}2-\text{deoxy-}2-\text{phthalimido-}\beta-\text{D-}$ galactopyranosyl)- $(1 \rightarrow 4)$ -(2,6-di-O-benzyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2phthalimido- β -D-glucopyranoside (27) and 5-azidopentyl (2-acetamido-3,4,6-tri-O-acetyl-2-deoxy- β -Dgalactopyranosyl)- $(1 \rightarrow 4)$ -(2,6- di-O-benzyl- β -Dgalactopyranosyl)- $(1 \rightarrow 4)$ -2-acetamido-3,6-di-O-benzyl-2-deoxy- β -D-glucopyranoside [42] (28) (see Scheme 3). To this end, trisaccharide derivative 27 was prepared by de-p-methoxybenzylation of 5azidopentyl (3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -(2,6-di-O-benzyl-3-O-p-methoxybenzyl- β -D-galactopyranosyl)-(1

Scheme 4.

 \rightarrow 4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -Dglucopyranoside [42] (26), using ammonium cerium(IV) nitrate in acetonitrile—water (\rightarrow 27, 61%). Sialylation of 27 with sialyl donor 15, using NIS-TfOH as promoter system, in acetonitrile at -25 °C did not lead to any product formation (TLC). Also the use of O-ethyl S-[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-non-2-ulopyranosyl)onate dithiocarbonate [27] (18) as a donor, in the presence of methylsulfenyl triflate [43] as a promoter, in 9:4 acetonitrile-dichloromethane at -60 °C [28] was not successful. Compound 28, having two N-acetyl groups instead of two phthalimido groups, was expected to cause less steric hindrance during coupling than trisaccharide 27. However, condensation of sialyl donor 15 with acceptor 28. applying the same reaction conditions as described above, proved to be unsuccessful.

As concluded from several test reactions with different galactosyl donors, with the aim to synthesize analogue 2, the most appropriate donor for coupling to acceptor 19 was bromide 5 (Scheme 4). The condensation (IAP) was carried out in toluene-dichloromethane at 0 °C, using silver triflate as a promoter, affording tetrasaccharide derivative 29 (49%). Deprotection of 29 (\rightarrow 30, \rightarrow 31, \rightarrow 2) was performed in an analogous way as described for 22, affording, after lyophilization, 2 in an overall yield of 33%. ¹H NMR and positive FAB-CID-MS/MS data of 2 are presented in Tables 1 and 2, respectively.

The preparation of analogue 3 involved the coupling of a suitably N-phthaloylated glucosaminyl donor with 19. It turned out that the use of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl trichloroacetimidate [37] (32) was superior to that of 1,3,4,6-tetra-O-acetyl-2-deoxy-2-phthalimido- β -Dglucopyranose [44], using trimethylsilyl triflate as a promoter, or of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- α/β -D-glucopyranosyl bromide [44], using HgBr₂ as a promoter (see Scheme 4). This result is in agreement with an experimental comparison of the coupling efficiency of six standard N-phthaloylated glucosaminyl donors with several HO-4 acceptors [45]. When 32 was condensed (IAP) with 19 in dichloromethane in the presence of trimethylsilyl triflate as a catalyst, tetrasaccharide derivative 33 was obtained in a yield of 33%. The formation of the glycal 3,4,6-tri-O-acetyl-1,2-dideoxy-2-phthalimido-D-arabino-hex-1-enopyranose [44] was observed as the major side reaction. Deblocking of 33 (\rightarrow 34, \rightarrow 35, \rightarrow 3) was performed in a similar way to those described for both 22 and 29, to afford 3 in an overall

yield of 32%. ¹H NMR and positive FAB-CID-MS/MS data of 3 are presented in Tables 1 and 2, respectively.

Comparison of the ¹H NMR data of 1-3 showed that the replacement of GalNAc (1) by Gal (2) has a strong influence on the resonance positions of the Gal residue of the N-acetyllactosamine element. Not only Gal H-4 (C-4, attachment site) of this element shows a downfield shift, but also Gal H-1,2,3. Furthermore. a clearly deviating set for Neu5Ac H-3eq,3ax is found. Such remarkable shifts were not observed when replacing GalNAc (1) by GlcNAc (3). The formation of a hydrogen bond between the HexNAc NH and the Neu5Ac carboxyl group, which are probably in close proximity in the preferred solution conformations of 1 and 3, could be an explanation of this phenomenon. A similar hydrogen bonding was suggested in a study on the conformational properties of gangliosides [46].

It should be noted that the preparation of two additional analogs of the Sd^a determinant, wherein Neu5Ac has been replaced by a sulfate or a carboxymethyl group, will be published as a separate communication [42]. The evaluation in biochemical recognition assays of these two analogs and compounds 1–3 as inhibitors of microbial adhesion is planned. Additionally, these compounds could be useful for the investigation of their possible immunoregulatory activities and the determination of some of the essential structural features of the Sd^a determinant necessary for recognition by anti-Sd^a antibodies.

3. Experimental

General methods.—Reactions were monitored by TLC on Kieselgel 60 F₂₅₄ (E. Merck), by detection with UV light and then charring with aq 50% H₂SO₄. Column chromatography was performed on Kieselgel 60 (E. Merck, 70-230 mesh). Size-exclusion chromatography was performed on Sephadex LH-20. Solvents were evaporated under reduced pressure at 40 °C (water bath). Optical rotations were measured for solns in CHCl₃, unless otherwise stated, at 20 °C with a Perkin-Elmer 241 polarimeter, using a 10-cm 1-mL cell. ¹H (300 MHz) and ¹³C (APT, 75 MHz) NMR spectra were recorded at 27 °C with a Bruker AC 300 spectrometer or a Varian Gemini-300 instrument (¹³C only). Two-dimensional double-quantum filtered ¹H-¹H correlation spectra (2D DQF ¹H-¹H COSY) were recorded using a Bruker AMX 500 apparatus (500 MHz) at 27 °C. Chemical shifts (δ) are given in ppm relative to the signal for internal $Me_4Si(\delta 0)$ for solns in CDCl₃, indirectly to CD₃OD (δ 3.30) for solns in CD₃OD, or by reference to acetone (δ 2.225) for solns in D₂O (pH ~ 8; pH meter reading has not been corrected for D isotope effect), for 1 H, and indirectly to CDCl₃ (δ 76.9) for solns in CDCl₃ or indirectly to CD₃OD (δ 49.0) for solns in CD₃OD, for ¹³C. FTIR spectra were recorded on a Mattson Galaxy 5000 spectrometer. Fast-atombombardment mass spectrometry (FABMS) and FAB-CID-MS/MS was performed on a JEOL JMS SX/SX 102A four-sector mass spectrometer, operated at 10 kV accelerating voltage, equipped with a JEOL MS-FAB 10 D FAB gun, operated at 10 mA emission current, producing a beam of 6-keV Xenon atoms. Elemental analyses were carried out by H. Kolbe Mikroanalytisches Laboratorium (Mülheim an der Ruhr, Germany).

Ethyl (2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2-phthalimido-1-thio- β -D-glucopyranoside (6).—A soln of ethyl 3,6-di-Obenzyl-2-deoxy-2-phthalimido-1-thio- β -D-glucopy-ranoside [21] (4; 2.0 g, 3.7 mmol) and 2,3,4,6-tetra-Oacetyl- α -D-galactopyranosyl bromide (5; 4.16 g, 10.1 mmol) in dry 1:1 CH₂Cl₂-toluene (60 mL), containing powdered 4 Å molecular sieves (1 g), was stirred for 30 min under Ar. Then, a soln of silver triflate (3.83 g, 15.0 mmol) in dry toluene (80 mL) was added dropwise under the exclusion of light in 30 min at -40 °C. After stirring for 2 h, TLC (3:2) hexane-EtOAc) showed the disappearance of 4 (R_f 0.40) and the formation of $\mathbf{6}$ (R_f 0.20). Pyridine (10 mL) was added, and the mixture was diluted with CH₂Cl₂ (500 mL), filtered through Celite, washed with aq 10% Na₂S₂O₃ (3 ×) and water (3 ×), dried (Na₂SO₄), filtered, and concd. Column chromatography (55:45 hexane-EtOAc) of the residue gave 6, isolated as a colorless syrup (2.80 g, 87%); $[\alpha]_D$ $+31^{\circ}$ (c 1); NMR (CDCl₃): ¹H, δ 7.80–6.86 (m, 14 H, 2 Ph and Phth), 5.271 (dd, 1 H, $J_{3',4'}$ 3.5, $J_{4',5'} < 1$ Hz, H-4'), 5.214 (d, 1 H, $J_{1,2}$ 10.1 Hz, H-1), 5.149 (dd, 1 H, $J_{1'2'}$ 8.0, $J_{2'3'}$ 10.4 Hz, H-2'), 4.858 (dd, 1 H, H-3'), 4.622 (d, 1 H, H-1'), 2.634 (m, 2 H, CH₃CH₂S), 2.062, 2.024, 2.022, and 1.972 (4 s, each 3 H, 4 Ac), 1.174 (t, 3 H, CH_3CH_2S); ¹³C, δ 169.9, 169.8, 169.7, and 168.9 (4 COCH₃), 167.6 and 167.1 (COPhth), 100.0 (C-1'), 80.8, 78.7, 77.5, 77.3, 70.7, 70.1, 69.2, and 66.6 (C-1,3,4,5,2',3',4',5'), 74.2, 73.3, 67.4, and 60.4 (C-6,6', 2 PhCH₂O), 54.4 (C-2), 23.5 (CH₃CH₂S), 14.6 (CH₃CH₂S). Anal. Calcd for C₄₄H₄₉NO₁₅S: C, 61.17; H, 5.72. Found: C, 61.06; H, 5.84.

Ethyl β -D-galactopyranosyl- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2-phthalimido-1-thio-β-D-glucopyranoside (7).—To a soln of 6 (2.80 g, 3.2 mmol) in MeOH (200 mL) was added NaOMe until pH 9. The mixture was stirred overnight, when TLC (8:2 CH₂Cl₂-MeOH) showed a complete conversion of 6 into 7 $(R_f \ 0.55)$. After neutralization with Dowex-50 (H⁺) resin and filtration, the soln was concd to give 7, isolated as a syrup (2.22 g, quantitatively); $[\alpha]_D$ $+49^{\circ}$ (c 1); NMR (CDCl₃): ¹H, δ 7.85–6.86 (m, 14 H, 2 Ph and Phth), 5.225 (d, 1 H, $J_{1,2}$ 10.4 Hz, H-1), 4.515 (d, 1 H, $J_{1',2'}$ 7.7 Hz, H-1'), 2.630 (m, 2 H, CH₃CH₂S), 1.167 (t, 3 H, CH₃CH₂S); 13 C, δ 167.8 and 167.5 (COPhth), 102.8 (C-1'), 80.8, 79.0, 78.6, 77.9, 74.4, 73.5, 72.0, and 69.0 (C-1,3,4,5,2',3',4',5'), 74.8, 73.2, 68.2, and 62.0 (C-6,6', 2 PhCH₂O), 54.6 (C-2), 23.6 (CH₃CH₂S), 14.7 (CH₃CH₂S). Anal. Calcd for $C_{36}H_{41}NO_{11}S$: C, 62.15; H, 5.94. Found: C, 62.04; H, 5.91.

Ethyl (3,4-O-isopropylidene-β-D-galactopyranosyl)- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2-phthalimido-1-thio- β -D-glucopyranoside (9).—To a soln of 7 (1.78 g, 2.6 mmol) in 2,2-dimethoxypropane (75 mL) was added p-toluenesulfonic acid (113 mg, 0.65 mmol) (pH 2-3), and the mixture was stirred overnight under Ar at room temperature. TLC analysis (85:15 CH₂Cl₂acetone) then showed the formation of 8 (R_f 0.81) and the disappearance of 7. The mixture was neutralized with Et₃N, and co-concd with toluene $(3 \times)$, EtOH $(3 \times)$, and CH₂Cl₂ $(3 \times)$. The residue was dissolved in CH₂Cl₂ (12.5 mL) and aq 50% TFA (0.1 mL) was added. After stirring for 5 min, TLC (85:15 CH₂Cl₂-acetone) showed the disappearance of 8 and the formation of 9 (R_f 0.50). The mixture was neutralized with Et₃N (pH 7-8) and co-concd with toluene $(3 \times)$, EtOH $(3 \times)$, and $CH_2Cl_2(3 \times)$. Column chromatography (85:15 CH₂Cl₂-acetone) of the residue afforded 9, isolated as a colorless syrup $(1.39 \text{ g}, 74\%); [\alpha]_D + 63^\circ (c 1); \text{ NMR (CDCl}_3): {}^1\text{H},$ δ 7.85–6.85 (m, 14 H, 2 Ph and Phth), 5.228 (d, 1 H, $J_{1,2}$ 10.4 Hz, H-1), 4.429 (d, 1 H, $J_{1',2'}$ 8.4 Hz, H-1'), 3.002 (d, 1 H, $J_{\rm OH,2'}$ 2.7 Hz, HO-2'), 2.352 (bt, 1 H, HO-6'), 2.643 (m, 2 H, CH_3CH_2S), 1.496 and 1.321 $(2 \text{ s, each } 3 \text{ H, Me}_2\text{C}), 1.176 \text{ (t, } 3 \text{ H, C}H_3\text{CH}_2\text{S});$ ¹³C, δ 110.0 (Me₂C), 101.9 (C-1'), 80.8, 79.3, 78.8, 78.5, 78.1, 74.0, 73.6, and 73.5 (C-1,3,4,5,2',3',4',5'), 74.8, 73.2, 68.2, and 61.9 (C-6,6', 2 PhCH₂O), 54.6 (C-2), 27.9 and 26.1 [$(CH_3)_2C$], 23.5 (CH_3CH_2S), 14.7 (CH_3CH_2S). Anal. Calcd for $C_{39}H_{45}NO_{11}S$: C, 63.42; H, 6.08. Found: C, 63.66; H, 6.16.

Compound 9 was further characterized after O-acetylation with 1:1 Ac₂O-pyridine, followed by

co-concn with toluene $(3 \times)$, EtOH $(3 \times)$, and CH₂Cl₂ $(3 \times)$, affording **10**; ¹H NMR (CDCl₃): δ 7.85–6.90 (m, 14 H, 2 Ph and Phth), 5.209 (d, 1 H, $J_{1,2}$ 9.9 Hz, H-1), 4.963 (dd, 1 H, $J_{1',2'}$ 8.4, $J_{2',3'}$ 7.9 Hz, H-2'), 4.461 (d, 1 H, H-1'), 2.619 (m, 2 H, CH₃C H_2 S), 2.08 (bs, 6 H, 2 Ac), 1.520 and 1.308 (2 s, each 3 H, Me₂C), 1.163 (t, 3 H, C H_3 CH₂S).

Ethyl (2,6-di-O-benzyl-3,4-O-isopropylidene-β-Dgalactopyranosyl)- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2phthalimido-1-thio- β -D-glucopyranoside (11).—To a stirred soln of 9 (1.39 g, 1.9 mmol) in dry DMF (40 mL) were added silver(I) oxide (5.25 g, 22.7 mmol) and KI (1.57 g, 9.4 mmol) under Ar at 0 °C. Benzyl bromide (2.69 mL, 22.6 mmol) in dry DMF (5 mL) was added dropwise. After 60 min the mixture was allowed to achieve room temperature and after an additional 2 h, TLC (96:4 CH₂Cl₂-acetone) showed a complete conversion of 9 into 11 (R_f 0.72). The mixture was diluted with CH₂Cl₂ (200 mL), filtered through Celite, washed with aq 10% $Na_2S_2O_3$ (2 ×) and aq 5% NaCl $(2 \times)$, dried (Na_2SO_4) , filtered, and concd. Column chromatography (96:4 CH₂Cl₂acetone) of the residue gave 11, isolated as a colorless syrup (1.66 g, 96%); $[\alpha]_D + 49^\circ$ (c 1); NMR (CDCl₃): 1 H, δ 7.82–6.83 (m, 24 H, 4 Ph and Phth), 5.236 (d, 1 H, $J_{1,2}$ 9.9 Hz, H-1), 4.452 (d, 1 H, $J_{1',2'}$ 8.5 Hz, H-1'), 2.635 (m, 2 H, CH_3CH_2S), 1.370 and 1.329 (2 s, each 3 H, Me₂C), 1.171 (t, 3 H, CH_3CH_2S); ¹³C, δ 167.6 and 167.0 (COPhth), 109.3 (Me_2C) , 101.9 (C-1'), 80.7, 80.2, 79.2, 79.0, 77.8, 77.7, 73.5, and 71.9 (C-1,3,4,5,2',3',4',5'), 74.2, 73.1, 73.0, 72.8, 68.8, and 67.8 (C-6,6', 4 PhCH₂O), 54.4 (C-2), 27.6, and 26.0 $[(CH_3)_2C]$, 23.4 (CH_3CH_2S) , 14.6 (CH₃CH₂S). Anal. Calcd for C₅₃H₅₇NO₁₁S: C, 69.49; H, 6.27. Found: C, 69.34; H, 6.33.

5-Azidopentanol (14).—To a stirred soln of 1,5pentanediol (4.5 mL, 42.9 mmol) and 2,4,6-collidine (7.6 mL, 57.2 mmol) in CH₂Cl₂ (75 mL) was added dropwise a soln of benzoyl chloride (6.7 mL, 57.3 mmol) in CH_2Cl_2 (25 mL) at -50 °C under Ar. After stirring for 4 h at -20 °C, TLC (95:5 CH₂Cl₂-acetone) showed the formation of 5-benzoyloxy-pentanol (R_f 0.25), then the mixture was diluted with CH₂Cl₂ (200 mL), washed with M HCl $(2 \times)$ and water $(2 \times)$, dried (Na_2SO_4) , filtered, and concd. Column chromatography (95:5 CH₂Cl₂acetone) of the residue gave 5-benzoyloxy-pentanol, isolated as a colorless oil (4.06 g, 45%); NMR $(CDCl_3)$: ¹H, δ 8.05–7.40 (m, 5 H, Ph), 4.334 (t, 2 H, J 6.6 Hz, HO(CH₂)₄CH₂OBz), 3.672 (t, 2 H, J6.2 Hz, $HOCH_2(CH_2)_4OBz$), 1.86–1.50 (m, 6 H, $HOCH_2(CH_2)_3CH_2OBz);$ ¹³C, δ 165.7 (COPh),

131.9–127.3 (C_6H_5CO), 64.0 [HO(CH₂)₄CH₂OBz], 61.1 [HOCH₂(CH₂)₄OBz], 31.2, 27.5, and 21.3 [HOCH₂(CH₂)₃CH₂OBz].

To a stirred soln of 5-benzoyloxy-pentanol (2.7 g, 13.1 mmol) and triphenylphosphine (3.8 g, 14.5 mmol) in dry THF (60 mL) was added dropwise a 1.2 M hydrazoic acid soln in benzene (16.5 mL) [47], followed by the dropwise addition of diethyl azodicarboxylate (2.3 mL, 14.5 mmol) at 0 °C under Ar. After stirring for 1.5 h at room temperature, TLC (85:15 hexane-EtOAc) showed the formation of 1azido-5-benzoyloxy-pentane (R_f 0.45), and the mixture was concd. Column chromatography (95:5 CH₂Cl₂-acetone) of the residue gave 1-azido-5-benzoyloxy-pentane, isolated as a colorless oil (2.9 g, 95%); IR (KBr): 2096 cm⁻¹, N₃; NMR (CDCl₃): ¹H, δ 8.06-7.41 (m, 5 H, Ph), 4.336 (t, 2 H, J 6.6 Hz, $N_3(CH_2)_4CH_2OBz$), 3.306 (t, 2 H, J 6.2 Hz, $N_3CH_2(CH_2)_4OBz$, 1.84-1.51 (m, $N_3CH_2(CH_2)_3CH_2OBz$; ¹³C, δ 165.1 (COPh), 131.9–127.4 (C_6H_5CO), 63.6 [$N_3(CH_2)_4CH_2OBz$], 50.2 $[N_3CH_2(CH_2)_4OBz]$, 27.5, 27.3, and 22.3 $[N_3CH_2(CH_2)_3CH_2OBz].$

To a soln of 1-azido-5-benzoyloxy-pentane (10.5 g, 45.1 mmol) in MeOH (200 mL) was added NaOMe until pH 10. The mixture was stirred for 48 h, when TLC (1:1 hexane–EtOAc) showed a complete conversion of 1-azido-5-benzoyloxy-pentane into 14 (R_f 0.35). After neutralization with Dowex-50 (H⁺) resin, the mixture was filtered, and concd. Column chromatography (1:1 hexane–EtOAc) of the residue gave 14, isolated as a colorless oil (5.6 g, 97%); IR (KBr): 2094 cm⁻¹, N₃; NMR (CDCl₃): 1 H, δ 3.662 (t, 2 H, J 6.5 Hz, N₃(CH₂)₄CH₂OH), 3.288 (t, 2 H, J 6.8 Hz, N₃CH₂(CH₂)₄OH), 1.67–1.41 (m, 6 H, N₃CH₂(CH₂)₃CH₂OH); 13 C, δ 61.5 [N₃(CH₂)₄CH₂OH], 50.8 [N₃CH₂(CH₂)₄OH], 31.5, 28.0, and 22.4 [N₃CH₂(CH₂)₃CH₂OH].

5 - Azidopentyl (2, 6 - di - O - benzyl - 3, 4 - O - isopropylidene-β-D-galactopyranosyl)- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (12).—A soln of 11 (1.23 g, 1.3 mmol) and 5-azidopentanol (14) (306 mg, 2.4 mmol) in dry CH₂Cl₂ (20 mL), containing 3 Å molecular sieves (0.5 g), was stirred for 30 min under Ar. Then, the mixture was cooled to 0 °C, and a soln of NIS (362 mg, 1.6 mmol) and TfOH (17.8 μL, 0.2 mmol) in CH₂Cl₂ (30 mL) was added. After 5 min, TLC (95:5 CH₂Cl₂-acetone) showed a complete conversion of 11 (R_f 0.49) into 12 (R_f 0.44). The mixture was neutralized with Et₃N, diluted with CH₂Cl₂ (250 mL), filtered, washed with aq 5% NaHSO₃ (2 ×), aq

10% NaHCO₃ $(2 \times)$, and water $(2 \times)$, dried (Na₂SO₄), filtered, and concd. Column chromatography (95:5 CH₂Cl₂-acetone) of the residue afforded 12, isolated as a colorless syrup (1.10 g, 84%); $[\alpha]_D$ $+41^{\circ}$ (c 1); IR (KBr): 2091 cm⁻¹, N₃; NMR (CDCl₃): 1 H, δ 7.80–6.83 (m, 24 H, 4 Ph and Phth), 5.100 (d, 1 H, $J_{1,2}$ 8.3 Hz, H-1), 4.423 (d, 1 H, $J_{1',2'}$ 8.5 Hz, H-1'), 1.376 and 1.330 (2 s, each 3 H, Me₂C); 13 C, δ 167.8 and 167.5 (COPhth), 109.5 (Me₂C), 102.2 (C-1'), 98.1 (C-1), 80.4, 79.2, 78.1, 77.0, 75.0, 73.6, and 72.0 (C-3,4,5,2',3',4',5'), 74.2, 73.2, 73.1, 73.0, 68.9, 68.7, and 67.8 (C-6,6', 4 Ph CH_2O and $OCH_2C_4H_8N_3$), 55.5 (C-2), 50.9, 28.5, 28.1, and 22.8 (OCH₂ C_4 H₈N₃), 27.7 and 26.2 $[(CH_3)_2C]$. Anal. Calcd for $C_{56}H_{62}N_4O_{12}$: C, 68.42; H, 6.36. Found: C, 68.35; H, 6.42.

5-Azidopentyl (2,6-di-O-benzyl-β-D-galactopyranosyl)- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (13).—A soln of 12 (0.94 g, 0.96 mmol) in aq 80% HOAc (17 mL) was stirred for 2 h at 80 °C. TLC (95:5 CH₂Cl₂-acetone) then showed a complete conversion of 12 (R_f 0.46) into 13 (R_f 0.29), and the mixture was co-concd with toluene $(3 \times)$, EtOH $(3 \times)$, and CH_2Cl_2 $(3 \times)$. Column chromatography (95:5 CH₂Cl₂-acetone) of the residue afforded 13, isolated as a colorless syrup $(0.83 \text{ g}, 91\%); [\alpha]_D + 29^\circ (c 1); IR (KBr): 2096$ cm⁻¹, N₃; NMR (CDCl₃): 1 H, δ 7.80–6.83 (m, 24) H, 4 Ph and Phth), 5.105 (d, 1 H, $J_{1,2}$ 8.3 Hz, H-1), 4.450 (d, 1 H, H-1'); 13 C, δ 167.8 and 167.5 (COPhth), 103.0 (C-1'), 98.2 (C-1), 79.9, 78.2, 77.0, 75.1, 73.4, 72.8, and 69.0 (C-3,4,5,2',3',4',5'), 75.0, 74.4, 73.5, 73.1, 69.1, 69.0, and 67.9 (C-6,6', 4 $PhCH_2O$ and $OCH_2C_4H_8N_3$, 55.6 (C-2), 51.0, 28.6, 28.2, and 23.0 ($OCH_2C_4H_8N_3$). Anal. Calcd for $C_{53}H_{58}N_4O_{12}$: C, 67.50; H, 6.20. Found: C, 67.42; H, 6.40.

5-Azidopentyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3, 5-dideoxy-D-glycero-α-D-galacto-non-2-ulopyranosylonate)- $(2 \rightarrow 3)$ -(2,6-di-O-benzyl-β-D-galactopyranosyl)- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranoside (19).—A soln of 13 (0.54 g, 0.57 mmol) and methyl (phenyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio-D-glycero-D-galacto-non-2-ulopyranosid)onate [27] (15; 0.62 g, 1.01 mmol) in dry acetonitrile (9 mL)/CH₂Cl₂ (0.5 mL), containing powdered 4 Å molecular sieves (0.4 g), was stirred for 30 min under Ar. The mixture was cooled to -45 °C, and NIS (0.74 g, 3.3 mmol) was added, followed by the dropwise addition of a soln of TfOH (76 μL, 0.86 mmol) in CH₂Cl₂ (1.5 mL). After stirring for 6 h at -45 °C, TLC (6:4 toluene-

acetone) showed the complete disappearance of 13 $(R_f \ 0.61)$ and the formation of **19** $(R_f \ 0.30)$ and a sialic acid degradation product (R_f 0.24) [48]. Et₃N (150 μ L) was added, and the mixture was diluted with CH₂Cl₂ (175 mL), filtered (Celite), washed with aq 5% Na₂S₂O₃ (3 ×), aq 10% NaHCO₃ (2 ×), and water, dried (Na₂SO₄), filtered, and concd. Column chromatography of the residue was performed sequentially on silica 70–230 mesh (7:3 toluene– acetone) and silica > 230 mesh (8:1 toluene-MeOH) to give 19, isolated as a colorless syrup (494 mg, 60%), and the corresponding β -anomer 19 β (66 mg, 8%). Compound **19**: $[\alpha]_D + 12^\circ (c \ 1)$; $R_f \ 0.16 \ (8:1)$ toluene-MeOH); NMR (CDCl₃): ¹H, δ 7.80-6.85 (m, 24 H, 4 Ph and Phth), 5.392 (m, 1 H, H-8"), 5.320 (dd, 1 H, $J_{6'',7''}$ 1.9, $J_{7'',8''}$ 7.8 Hz, H-7"), 5.231 (d, 1 H, $J_{NH,4''}$ 9.8 Hz, NH), 5.078 (d, 1 H, $J_{1.2}$ 8.2 Hz, H-1), 3.764 (s, 3 H, OMe), 2.517 (dd, 1 H, $J_{3''\text{eq},3''\text{ax}}$ 13.0, $J_{3''\text{eq},4''}$ 4.7 Hz, H-3"eq), 2.081, 2.022, 1.975, 1.947, and 1.878 (5 s, each 3 H, 4 Ac and NAc); 13 C, δ 102.5 (C-1'), 98.4 (C-2"), 98.1 (C-1), 75.0, 74.3, 73.3, 73.0, 68.8 (2 C), 67.9, and 62.2 (C-6,6',9'', 4 PhCH₂O and OCH₂C₄H₈N₃), 51.0,28.6, 28.2, and 22.9 (OCH₂ C_4 H₈N₃), 49.1 (OCH₃), 37.1 (C-3"), 23.0 (NHCOCH₃). Anal. Calcd for C₇₄H₈₅N₅O₂₄: C, 62.22; H, 6.00. Found: C, 62.06; H, 5.98. Compound 19β : $[\alpha]_D + 17^\circ (c\ 1)$; $R_f\ 0.21$ (8:1 toluene–MeOH); NMR (CDCl₃): 1 H, δ 7.70– 6.81 (m, 24 H, 4 Ph and Phth), 3.671 (s, 3 H, OMe), 2.550 (dd, 1 H, $J_{3''\text{eq},3''\text{ax}}$ 13.3, $J_{3''\text{eq},4''}$ 4.5 Hz, H-3"eq), 2.100, 2.089, 1.990, 1.984, and 1.738 (5 s, each 3 H, 4 Ac and NAc). Anal. Calcd for $C_{74}H_{85}N_5O_{24}$: C, 62.22; H, 6.00. Found: C, 62.36; H, 6.10.

O-Acetylation of a small amount of **19** with 1:1 Ac₂O-pyridine for 16 h at 50 °C, followed by coconcn with toluene $(3 \times)$, afforded **20**; NMR (CDCl₃): ¹H, δ 7.85–6.80 (m, 24 H, 4 Ph and Phth), 5.595 (m, 1 H, H-8"), 5.350 (dd, 1 H, $J_{6",7"}$ 2.5, $J_{7",8"}$ 8.4 Hz, H-7"), 5.037 (dd, 1 H, $J_{3',4'}$ 3.9, $J_{4',5'} < 1$ Hz, H-4'), 3.827 (s, 3 H, OMe), 2.594 (dd, 1 H, $J_{3"eq,3"ax}$ 12.6, $J_{3"eq,4"}$ 4.7 Hz, H-3"eq), 2.078, 2.015, 1.971, 1.954, 1.862, and 1.834 (6 s, each 3 H, 5 Ac and NAc).

5-Azidopentyl (methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero- α -D-galacto-non-2-ulopyranosylonate)- $(2 \rightarrow 3)$ - $[(3,4,6-tri\text{-O-acetyl-2-deoxy-2-phthalimido-}\beta\text{-D-galactopyranosyl})-(1 \rightarrow 4)]$ - $(2,6-di\text{-O-benzyl-}\beta\text{-D-galactopyranosyl})-(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (22).—A mixture of 19 (69 mg, 48 μ mol) and HgBr₂ (69 mg, 192 μ mol) in dry toluene (2 mL), containing powdered 4 Λ molecular sieves (0.1 g),

was stirred for 30 min at room temperature under Ar. A soln of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- α -D-galactopyranosyl bromide [32] (21; 48 mg, 96 μ mol) in dry acetonitrile (2 mL) and dry toluene (1 mL) was added dropwise in 55 min. After stirring for an additional 2.5 h, TLC (6:4 toluene-acetone) showed the formation of mainly 22 (R_f 0.25) and a minor amount of 25 (R_f 0.21). The mixture was diluted with CH₂Cl₂ (50 mL), filtered through Celite, washed with aq 5% KI $(2 \times)$ and water, dried (Na₂SO₄), filtered, and concd. Size-exclusion chromatography (1:1 CH₂Cl₂-MeOH) of the residue on Sephadex LH-20 resulted in a sequential elution of 25 and 22, whereby 22 was still contaminated with 25 and 19. In order to make a separation of 22 and 19 accessible, crude 22 was treated with 1:1:5 trimethylsilylchloride-1,1,1,3,3,3-hexamethyldisilazane-dry pyridine (0.7 mL) for 30 min, affording the conversion (TLC, 6:4 toluene–acetone) of 19 (R_f 0.28) into 4'-O-trimethylsilylated 19 (R_f 0.33). After concn, column chromatography (6:4 toluene-acetone) of the residue afforded 4'-O-trimethylsilylated 19 (32 mg, 44%), and then 22, isolated as a colorless glass (28) mg, 31%); $[\alpha]_D - 4^\circ (c \ 1)$; NMR (CDCl₃): ¹H, δ 7.99-6.90 (m, 28 H, 4 Ph and 2 Phth), 6.114 (dd, 1 H, $J_{2''',3'''}$ 11.7, $J_{3''',4'''}$ 3.5 Hz, H-3'''), 5.489 (dd, 1 H, $J_{4'',5''} < 1$ Hz, H-4'''), 5.379 (d, 1 H, $J_{1''',2'''}$ 8.3 Hz, H-1""), 5.300 (dd, 1 H, $J_{6",7"}$ 2.4, $J_{7",8"}$ 8.9 Hz, H-7"), 3.910 (s, 3 H, OMe), 2.166, 2.080, 2.057, 1.954, 1.939, 1.864, 1.823, and 1.763 (8 s, each 3 H, 7 Ac and NAc); 13 C, δ 101.8 (C-1'), 98.3 (C-2"), 97.9 (2 C) (C-1,1"), 51.0, 28.6, 28.2, and 22.9 $(OCH_2C_4H_8N_3)$, 49.0 (OCH_3) , 36.9 (C-3''), 23.0 $(NHCOCH_3)$. FAB+MS $(C_{93}H_{104}N_6O_{33})$: m/z 1856 $[M + Na]^+$, 1834 $[M + H]^+$.

Compound **25**; FAB⁺MS ($C_{113}H_{123}N_7O_{42}$): m/z 2273 [M + Na]⁺, 2251 [M + H]⁺.

5-Azidopentyl (5-acetamido-3,5-dideoxy-D-glycero-α-D-galacto-non-2-ulopyranosylonic acid)-(2 \rightarrow 3)-[(2-acetamido-2-deoxy-β-D-galactopyranosyl)-(1 \rightarrow 4)]-(2, 6-di-O-benzyl-β-D-galactopyranosyl)-(1 \rightarrow 4)-2-acetamido - 3, 6-di-O-benzyl-2-deoxy-β-D-glucopyranoside (24).—A soln of 22 (43 mg, 23 μmol) and LiI (64 mg, 0.48 mmol) in dry pyridine (2 mL) was stirred overnight in the dark at 115 °C under Ar. Then, TLC (93:7 CH₂Cl₂-MeOH) showed the de-esterification to be complete (23; R_f 0.40), and after cooling to room temperature the mixture was co-concd with toluene (2 ×). The residue was dissolved in CH₂Cl₂ (50 mL), washed with M HCl (2 ×) and aq 5% NaCl (3 ×), and the combined aq layers were extracted with CH₂Cl₂ (20 mL). The

combined organic phases were dried (Na₂SO₄), filtered, and concd. Column chromatography (93:7 CH₂Cl₂-MeOH) of the residue afforded **23**, isolated as a glass (32 mg, 75%); ¹H NMR (CD₃OD): δ 7.80–6.95 (m, 28 H, 4 Ph and 2 Phth), 6.178 (dd, 1 H, $J_{2''',3'''}$ 11.7, $J_{3''',4'''}$ 3.5 Hz, H-3'''), 5.594 (d, 1 H, $J_{1''',2'''}$ 8.4 Hz, H-1'''), 5.532 (m, 1 H, H-8"), 5.486 (dd, 1 H, $J_{4''',5'''}$ < 1 Hz, H-4'''), 5.279 (dd, 1 H, $J_{6'',7''}$ 2.5, $J_{7'',8''}$ 8.3 Hz, H-7"), 2.052, 2.046, 2.013, 2.007, 1.866, 1.804, 1.774, and 1.689 (8 s, each 3 H, 7 Ac and NAc).

A soln of 23 (32 mg, 18 μ mol) in ethanolic 33% MeNH₂ (5 mL) was stirred at room temperature for 10 d, during which time the mixture was repeatedly concd and new reagent $(4 \times 5 \text{ mL})$ added. After concn, the residue was dissolved in dry MeOH (3 mL), Ac₂O (40 mL) was added at 0 °C, and the mixture was stirred for 2 h. Then, TLC (1:1 CH₂Cl₂-MeOH) showed a complete conversion of 23 into 24 (R_f 0.60), and the soln was concd. Column chromatography (6:4:0.3 CH₂Cl₂-MeOHwater) of the residue afforded 24, isolated as a colorless glass (23 mg, 95%); $[\alpha]_D + 11^\circ$ (c 1, MeOH); ¹H NMR (CD₃OD): δ 7.51–7.16 (m, 20 H, 4 Ph), 3.256 (t, 2 H, J 6.7 Hz, $OC_4H_8CH_2N_3$), 2.796 (dd, 1 H, $J_{3''\text{eq},3''\text{ax}}$ 13.0, $J_{3''\text{eq},4''}$ 5.2 Hz, H-3"eq), 2.043, 2.019, and 1.913 (3 s, each 3 H, 3 NAc). FAB-MS $(C_{66}H_{88}N_6O_{24})$: m/z 1347 $[M-H]^-$.

5-Aminopentyl (5-acetamido-3,5-dideoxy-D-glycero- α -D-galacto-non-2-ulopyranosylonic acid)-(2 \rightarrow 3)-[(2acetamido-2-deoxy- β -D-galactopyranosyl)- $(1 \rightarrow 4)$]- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -2-acetamido-2-deoxy- β -Dglucopyranoside (1).—A soln of 24 (17 mg, 12 μ mol) in tert-butanol (1.8 mL) and water (0.7 mL), adjusted to pH 10-11 with a few drops of ag 25% NH₃, was hydrogenolysed for 1 h in the presence of 10% Pd-C (35 mg). TLC (5:10:4 CH₂Cl₂-MeOHwater) then showed the conversion of 24 into a new compound (R_f 0.75). The soln was flushed with N_2 until pH 7, HOAc was added until pH 4-5, and the hydrogenolysis was continued for 9 h, after which TLC (5:10:4 CH₂Cl₂-MeOH-water) showed the formation of 1 (R_f 0.45). The mixture was filtered through Celite and concd. Column chromatography (5:10:3 CH₂Cl₂-MeOH-water) of the residue, followed by lyophilization from water, afforded 1, isolated as a white powder (6.4 mg, 54%); $[\alpha]_D + 2^\circ$ (c 0.25, water); ^{1}H NMR (D₂O): see Table 1. FAB – MS $(C_{38}H_{66}N_4O_{24})$: m/z 961 $[M-H]^-$; FAB+MS: m/z 963 [M + H]⁺.

5 - Azidopentyl (3, 4, 6 - tri - O - acetyl - 2 - deoxy - 2 - phthalimido-β-D-galactopyranosyl)- $(1 \rightarrow 4)$ -(2,6-di-O-

benzyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2 - deoxy - 2 - phthalimido - β - D - glucopyranoside(27).—To a soln of 5-azidopentyl (3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-galactopyranosyl)-(1 \rightarrow 4)-(2,6-di-O-benzyl-3-O-p-methoxybenzyl- β -Dgalactopyranosyl)- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside [42] (26; 100 mg, 68 μ mol) in acetonitrile (4.5 mL) and water (0.5 mL) was added ammonium cerium(IV) nitrate (97 mg, 177 μ mol), and the mixture was stirred for 2 h at room temperature. Then, TLC (94:6 CH₂Cl₂acetone) showed the disappearance of 26 and the formation of 27 (R_f 0.24). The mixture was diluted with CH₂Cl₂ (50 mL), washed with aq 10% NaHCO₃ $(3 \times)$, and the aq layers were combined and extracted with CH₂Cl₂ (10 mL). The organic layers were combined, dried (Na₂SO₄), filtered, and concd. Column chromatography (94:6 CH₂Cl₂-acetone) of the residue afforded 27, isolated as a colorless syrup $(56 \text{ mg}, 61\%); [\alpha]_D - 15^\circ (c 1); \text{ NMR (CDCl}_3): {}^1\text{H},$ δ 7.95-6.90 (m, 28 H, 4 Ph and 2 Phth), 6.042 (dd, 1 H, $J_{2'',3''}$ 11.6, $J_{3'',4''}$ 3.5 Hz, H-3"), 5.481 (d, 1 H, H-4''), 5.421 (d, 1 H, $J_{1'',2''}$ 8.4 Hz, H-1''), 5.096 (d, 1 H, $J_{1,2}$ 8.4 Hz, H-1), 2.146, 1.998, and 1.825 (3 s, each 3 H, 3 Ac); 13 C, δ 170.2 (2 C), 169.6, 168.0, and 167.2 (3 COCH₃ and COPhth), 102.1 (C-1'), 99.5 (C-1"), 98.2 (C-1), 80.8, 77.6, 76.7, 75.8, 75.1, 73.7, 72.9, 70.2, 67.3, and 66.4 (C-3,4,5,2',3',4',5',3'',4'',5''), 55.6 and 51.3 (C-2,2"), 51.0, 28.6, 28.2, and 22.9 (OCH₂ C_4 H₈N₃), 20.6, 20.5, and 20.4 (3 COCH₃).

5-Azidopentyl (methyl 5-acetamido-4,7,8,9-tetra-Oacetyl-3, 5-dideoxy-D-glycero-α-D-galacto-non-2ulopyranosylonate)- $(2 \rightarrow 3)$ - $[(2,3,4,6-tetra-O-\beta-D$ galactopyranosyl)- $(1 \rightarrow 4)$]-(2, 6-di-O-benzyl- β -Dgalactopyranosyl)- $(1 \rightarrow 4)$ -3,6-di-O-benzyl-2-deoxy-2phthalimido-β-D-glucopyranoside (29).—A mixture of 19 (69 mg, 48 μ mol) and silver triflate (49 mg, 191 µmol) in dry toluene (3 mL), containing powdered 4 Å molecular sieves (0.1 g), was stirred for 10 min at room temperature under Ar. Then, a soln of 2,3,4,6-tetra-O-acetyl- α -D-galactopyranosyl bromide (5; 59 mg, 144 μ mol) in dry CH₂Cl₂ (2.5 mL) was added dropwise during 20 min at 0 °C. After stirring for an additional 30 min, TLC (6:4 toluene-acetone) showed the formation of **29** (R_f 0.26) and the almost complete disappearance of 19 (R_f 0.30). The mixture was neutralized with Et₃N, diluted with CH₂Cl₂ (50 mL), filtered through Celite, washed with aq 5% $Na_2S_2O_3$ (2 ×) and water, dried (Na_2SO_4), filtered, and concd. Size-exclusion chromatography (1:1 CH₂Cl₂-MeOH) of the residue on Sephadex LH-20,

followed by column chromatography (6:4 toluene–acetone) of the crude product afforded **29**, isolated as a colorless glass (42 mg, 49%); $[\alpha]_D$ 0° (c 1); NMR (CDCl₃): 1 H, δ 7.90–6.99 (m, 24 H, 4 Ph and Phth), 5.412 (dd, 1 H, $J_{3''',4'''}$ 2.0, $J_{4''',5'''}$ < 1 Hz, H-4"'), 3.827 (s, 3 H, OMe), 2.421 (dd, 1 H, $J_{3''eq,3''ax}$ 13.4, $J_{3''eq,4''}$ 4.8 Hz, H-3"eq), 2.139, 2.103, 2.006, 1.997, 1.982, 1.972, 1.947, 1.938, and 1.903 (9 s, each 3 H, 8 Ac and NAc); 13 C, δ 102.3 and 101.7 (C-1',1''), 99.5 (C-2"), 98.2 (C-1), 51.0, 28.6, 28.2, and 22.9 (OCH₂ C_4 H₈N₃), 49.1 (OCH₃), 35.5 (C-3"), 23.0 (NHCOCH₃). FAB⁺MS (C₈₇H₁₀₃N₅O₃₃): m/z 1768 [M + Na]⁺, 1746 [M + H]⁺.

5-Azidopentyl (5-acetamido-3,5-dideoxy-D-glycero- α -D-galacto-non-2-ulopyranosylonic acid)- $(2 \rightarrow 3)$ -[β -D-galactopyranosyl- $(1 \rightarrow 4)$]-(2,6-di-O-benzyl- β -Dgalactopyranosyl)- $(1 \rightarrow 4)$ -2-acetamido-3, 6-di-Obenzyl-2-deoxy-β-D-glucopyranoside (31).—A soln of **29** (28 mg, 16 μ mol) and LiI (38 mg, 0.28 mmol) in dry pyridine (2 mL) was stirred overnight in the dark at 115 °C under Ar. Then, TLC (93:7 CH₂Cl₂-MeOH) showed the de-esterification to be complete (30; R_f 0.22), and after cooling to room temperature the mixture was co-concd with toluene $(2 \times)$. The residue was dissolved in CH₂Cl₂ (50 mL), washed with M HCl $(2 \times)$ and aq 5% NaCl $(3 \times)$, and the combined aq layers were extracted with CH₂Cl₂ (10 mL). The combined organic phases were dried (Na₂SO₄), filtered, and concd. Column chromatography (93:7 CH₂Cl₂-MeOH) of the residue afforded 30, isolated as a glass (24 mg, 86%); NMR (CD_3OD) : 1 H, δ 7.95–6.95 (m, 24 H, 4 Ph and Phth), 5.608 (m, 1 H, H-8"), 2.046, 2.017, 1.985, 1.973, 1.910, 1.879, and 1.823 (7 s, 3,6,3,3,3,3,6 H, 8 Ac and NAc).

A soln of 30 (24 mg, 14 μ mol) in ethanolic 33% MeNH₂ (6 mL) was stirred for 10 d at room temperature, during which repeatedly the mixture was concd and new reagent $(3 \times 5 \text{ mL})$ added. After concn, the residue was dissolved in dry MeOH (2 mL), and $Ac_2O(30 \mu L)$ was added at 0 °C. After stirring for 2 h, TLC (6:4:0.3 CH₂Cl₂-MeOH-water) showed a complete conversion of 30 into 31 (R_f 0.50), and the soln was concd. Column chromatography (6:4:0.3 CH₂Cl₂-MeOH-water) of the residue gave 31, isolated as a colorless glass (15 mg, 82%); $[\alpha]_D + 3^\circ$ (c 1, MeOH); 1 H NMR (CD₃OD): δ 7.49–7.18 (m, 20 H, 4 Ph), 3.256 (t, 2 H, J 6.8 Hz, $OC_4H_8CH_2N_3$), 2.806 (dd, 1 H, $J_{3''\text{eq},3''\text{ax}}$ 12.6, $J_{3''\text{eq},4''}$ 5.1 Hz, H-3"eq), 2.015 and 1.890 (2 s, each 3 H, 2 NAc). FAB-MS $(C_{64}H_{85}N_5O_{24})$: m/z 1306 $[M - H]^-$.

5-Aminopentyl (5-acetamido-3,5-dideoxy-D-glycero- α -D-galacto-non-2-ulopyranosylonic acid)-(2 \rightarrow 3)-[β -

D-galactopyranosyl- $(1 \rightarrow 4)$]- β -D-galactopyranosyl- $(1 \rightarrow 4)$ -2-acetamido-2-deoxy- β -D-glucopyranoside (2).—A soln of 31 (12.0 mg, 9.0 μ mol) in tertbutanol (1.8 mL) and water (0.7 mL), adjusted to pH 10-11 with a few drops of aq 25% NH₃, was hydrogenolysed for 1 h in the presence of 10% Pd-C (30 mg). TLC (5:10:4 CH_2Cl_2 -MeOH-water) then showed the disappearance of 31 and the formation of several new compounds. The soln was flushed with N₂ until pH 7, HOAc was added until pH 4-5, and the hydrogenolysis was continued for 4.5 h, after which TLC (5:10:4 CH₂Cl₂-MeOH-water) showed the formation of 2 $(R_f \ 0.51)$. The mixture was filtered through Celite and concd. Column chromatography (5:10:3 CH₂Cl₂-MeOH-water) of the residue, followed by lyophilization from water, afforded 2, isolated as a white powder (3.9 mg, 47%); $[\alpha]_D + 3^\circ (c \ 0.25, \text{ water}); ^1H \ NMR \ (D_2O): \text{ see}$ Table 1. FAB⁻MS ($C_{36}H_{63}N_3O_{24}$): m/z 920 [M – $H]^-$; FAB⁺MS: m/z 922 [M + H]⁺.

5-Azidopentyl (methyl 5-acetamido-4,7,8,9-tetra-Oacetyl-3, 5-dideoxy-D-glycero-α-D-galacto-non-2ulopyranosylonate)- $(2 \rightarrow 3)$ -[(3, 4, 6-tri-O-acetyl-2deoxy-2-phthalimido-β-D-glucopyranosyl)- $(1 \rightarrow 4)$]-(2,6-di-O-benzyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -3,6-di-Obenzyl-2-deoxy-2-phthalimido- β -D-glucopyranoside (33).—A soln of 19 (47 mg, 33 μ mol) in dry CH₂Cl₂ (1.5 mL), containing 3 Å molecular sieves (0.1 g), was stirred for 30 min at room temperature under Ar. A soln of trimethylsilyl triflate (2.4 μ L, 13 μ mol) in dry CH_2Cl_2 (100 μ L) was added at room temperature, followed by the dropwise addition of a soln of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl trichloroacetimidate [37] (32; 49 mg, 85 μ mol) in dry CH₂Cl₂ (2.5 mL) during 10 min. Over a period of 4 h, TLC (7:3 toluene-acetone) showed the formation of 33 (R_f 0.19), but a complete conversion of 19 could not be realized. Pyridine (0.1 mL) was added, and the mixture was diluted with CH_2Cl_2 (50 mL), filtered, washed with water (2 ×), dried (Na₂SO₄), filtered, and concd. Column chromatography (7:3 toluene-acetone) of the residue resulted in a sequential elution of the byproduct 3,4,6tri-O-acetyl-1,2-dideoxy-2-phthalimido-D-arabinohex-1-enopyranose [44], 19 (17 mg, 36%), and finally 33, isolated as a colorless glass (20 mg, 33%); $[\alpha]_D$ $+2^{\circ}$ (c 1); NMR (CDCl₃): ¹H, δ 7.95–6.80 (m, 28 H, 4 Ph and 2 Phth), 6.053 (dd, 1 H, J 9.1, J 10.9 Hz, H-3"'), 5.422 (d, 1 H, $J_{1"',2"'}$ 8.4 Hz, H-1"'), 5.384 (ddd, 1 H, $J_{7''',8'''}$ 8.9, $J_{8'',9a''}$ 2.6, $J_{8'',9b''}$ 4.9 Hz, H-8"), 5.286 (dd, 1 H, $J_{6'',7''}$ 2.3 Hz, H-7"), 4.785 (ddd, 1 H, $J_{3''ax,4''}$ 12.3, $J_{3''eq,4''}$ 4.5, $J_{4'',5''}$ 10.7 Hz,

H-4"), 3.917 (s, 3 H, OMe), 2.085, 2.044, 2.008, 1.998, 1.945, 1.867, 1.822, and 1.785 (8 s, each 3 H, 7 Ac and NAc); 13 C, δ 101.8 (C-1"), 98.6 (C-2"), 97.9 and 97.8 (C-1,1""), 51.0, 28.6, 28.2, and 22.9 (OCH₂C₄H₈N₃), 49.0 (OCH₃), 36.7 (C-3"), 23.1 (NHCOCH₃). FAB⁺MS (C₉₃H₁₀₄N₆O₃₃): m/z 1856 [M + Na]⁺, 1834 [M + H]⁺.

5-Azidopentyl (5-acetamido-3,5-dideoxy-D-glycero- α -D-galacto-non-2-ulopyranosylonic acid)- $(2 \rightarrow 3)$ -[(2acetamido-2-deoxy- β -D-glucopyranosyl)- $(1 \rightarrow 4)$]-(2,6 $di - O - benzyl - \beta - D - galactopyranosyl) - (1 \rightarrow 4) - 2$ acetamido - 3, 6 - di - O - benzyl - 2 - deoxy - β - D glucopyranoside (35).—A soln of 33 (57 mg, 31 μ mol) and LiI (128 mg, 0.96 mmol) in dry pyridine (2 mL) was stirred overnight in the dark at 115 °C under Ar. Then, TLC (9:1 CH₂Cl₂-MeOH) showed the de-esterification to be complete (34; R_f 0.61), and after cooling to room temperature the mixture was co-concd with toluene $(2 \times)$. The residue was dissolved in CH₂Cl₂ (50 mL), washed with M HCl $(2 \times)$ and aq 5% NaCl $(3 \times)$, and the combined aq layers were extracted with CH₂Cl₂ (20 mL). The combined organic phases were dried (Na₂SO₄), filtered, and concd. Column chromatography (93:7 CH₂Cl₂-MeOH) of the residue afforded 34, isolated as a light yellow glass (45 mg, 80%); ¹H NMR (CD₃OD): δ 7.90–6.99 (m, 28 H, 4 Ph and 2 Phth), 6.120 (dd, 1 H, J 9.0, J 10.8 Hz, H-3""), 5.682 (d, 1 H, $J_{1'''2'''}$ 8.3 Hz, H-1'''), 5.514 (m, 1 H, H-8"), 5.274 (dd, 1 H, $J_{6'',7''}$ 2.3, $J_{7'',8''}$ 7.9 Hz, H-7"), 2.051, 2.042, 2.018, 1.971, 1.878, 1.812, 1.777, and 1.702 (8 s, each 3 H, 7 Ac and NAc).

A soln of 34 (18 mg, 10 μ mol), in ethanolic 33% MeNH₂ (4 mL), was stirred for 9 d at room temperature, during which the mixture was repeatedly concd and new reagent $(4 \times 4 \text{ mL})$ added. After concn, the residue was dissolved in dry MeOH (1.5 mL), Ac₂O (25 mL) was added at 0 °C, and the mixture was stirred for 2 h. Then, TLC (1:1 CH₂Cl₂-MeOH) showed a complete conversion of 34 into 35 ($R_{\rm f}$ 0.57), and the soln was concd. Column chromatography (6:4:0.2 CH₂Cl₂-MeOH-water) of the residue gave 35, isolated as a colorless glass (11 mg, 81%); $[\alpha]_D + 6^\circ$ (c 1, MeOH); NMR (CD₃OD): ¹H, δ 7.45-7.18 (m, 20 H, 4 Ph), 3.258 (t, 2 H, J 6.7 Hz, $OC_4H_8CH_2N_3$), 2.797 (dd, 1 H, $J_{3''eq,3''ax}$ 12.6, $J_{3''\text{eq},4''}$ 4.8 Hz, H-3''eq), 2.035, 2.016, and 1.928 (3 s, each 3 H, 3 NAc). FAB-MS $(C_{66}H_{88}N_6O_{24})$: m/z $1347 [M - H]^{-}$.

5-Aminopentyl (5-acetamido-3,5-dideoxy-D-glycero- α -D-galacto-non-2-ulopyranosylonic acid)- $(2 \rightarrow 3)$ -[(2-acetamido-2-deoxy- β -D-glucopyranosyl)- $(1 \rightarrow 4)$]- β -D-

galactopyranosyl- $(1 \rightarrow 4)$ -2-acetamido-2-deoxy- β -Dglucopyranoside (3).—A soln of 35 (12 mg, 8.7 μ mol) in tert-butanol (1.8 mL) and water (0.7 mL), adjusted to pH 10-11 with a few drops of aq 25% NH₃, was hydrogenolysed for 1 h in the presence of 10% Pd-C (30 mg). Then, TLC (5:10:4 CH₂Cl₂-MeOH-water) showed the disappearance of 35 and the formation of two new compounds (R_f 0.75 and R_f 0.79). The soln was flushed with N_2 until pH 7, HOAc was added until pH 4-5, and the hydrogenolysis was continued for 5 h, after which TLC (5:10:4 CH₂Cl₂-MeOH-water) showed the formation of 3 $(R_f 0.45)$. The mixture was filtered through Celite and concd. Column chromatography (5:10:3 CH₂Cl₂-MeOH-water) of the residue, followed by lyophilization from water, afforded 3, isolated as a white powder (4.2 mg, 50%); $[\alpha]_D + 1^\circ$ (c 0.25, water); NMR (D₂O): ¹H, see Table 1. FAB MS $(C_{38}H_{66}N_4O_{24})$: m/z 961 $[M-H]^-$; FAB^+MS : m/z $963 [M + H]^{+}$

Acknowledgements

We are grateful to the European Union for generous support of this project (Grant SC1*CT 890197). The authors also wish to thank Mr. P.H. Kruiskamp and Ms. Dr. J.J. Kettenes-van den Bosch for recording NMR spectra and Ms. A. van der Kerk-van Hoof for recording FAB-mass spectra.

References

- A.S.R. Donald, A.D. Yates, C.P.C. Soh, W.T.J. Morgan, and W.M. Watkins, Biochem. Biophys. Res. Commun., 115 (1983) 625-631; J. Williams, R.D. Marshall, H. van Halbeek, and J.F.G. Vliegenthart, Carbohydr. Res., 134 (1984) 141-155.
- [2] S.I. Macvie, J.A. Morton, and M.M. Pickles, Vox Sang., 13 (1967) 485-492; P.H. Renton, P. Howell, E. Ikin, C.M. Giles, and K.L.G. Goldsmith, ibid, 13 (1967) 493-501.
- [3] W.M. Watkins, in J.-P. Cartron and P. Rouger (Eds.), Blood Cell Biochemistry: Molecular Basis of Major Human Blood Group Antigens, Vol. 6, Plenum Press, New York, 1995, pp 351-375, and refs. cited therein.
- [4] D. Blanchard, J.-P. Cartron, B. Fournet, J. Montreuil, H. van Halbeek, and J.F.G. Vliegenthart, J. Biol. Chem., 258 (1983) 7691-7695.
- [5] B.K. Gillard, D. Blanchard, J.-F. Bouhours, J.-P. Cartron, J.A. van Kuik, J.P. Kamerling, J.F.G. Vliegenthart, and D.M. Marcus, *Biochemistry*, 27 (1988) 4601–4606.

- [6] A. Muchmore and J.M. Decker, Science, 229 (1985) 479-481.
- [7] J.S. Hunt, A.R. McGiven, A. Groufsky, K.L. Lynn, and M.C. Taylor, *Biochem. J.*, 227 (1985) 957–963.
- [8] K. Härd, G. van Zadelhoff, P. Moonen, J.P. Kamerling, and J.F.G. Vliegenthart, Eur. J. Biochem., 209 (1992) 895–915.
- [9] A.-M.M. Afonso, P.A. Charlwood, and R.D. Marshall, *Carbohydr. Res.*, 89 (1981) 309–319.
- [10] G. Toma, J.M. Bates, and S. Kumar, *Biochem. Biophys. Res. Commun.*, 200 (1994) 275-282.
- [11] N. Sathyamoorthy, J.M. Decker, A.P. Sherblom, and A.V. Muchmore, *Mol. Cell. Biochem.*, 102 (1991) 139–147, and refs. cited therein.
- [12] S. Ladisch, R. Li, and E. Olson, Proc. Natl. Acad. Sci. USA, 91 (1994) 1974–1978.
- [13] R. Li, N. Villacreses, and S. Ladisch, Cancer Res., 55 (1995) 211–214.
- [14] J. Parkkinen, R. Virkola, and T.K. Korhonen, *Infect. Immun.*, 56 (1988) 2623–2630.
- [15] J.L. Duncan, J. Infect. Dis., 158 (1988) 1379-1382.
- [16] C.P.C. Soh, A.S.R. Donald, J. Feeney, W.T.J. Morgan, and W.M. Watkins, *Glycoconjugate J.*, 6 (1989) 319–332.
- [17] A. Marra and P. Sinaÿ, Gazz. Chim. Ital., 117 (1987) 563–566.
- [18] M. Sugimoto, M. Numata, K. Koike, Y. Nakahara, and T. Ogawa, Carbohydr. Res., 156 (1986) C1-C5.
- [19] S. Inoue, M. Iwasaki, K. Ishii, K. Kitajima, and Y. Inoue, J. Biol. Chem., 264 (1989) 18520–18526.
- [20] A. Hasegawa and M. Kiso, in H. Ogura, A. Hasegawa, and T. Suami (Eds.), *Carbohydrates*, Kodansha Ltd., Tokyo, 1992, pp 243–266; T. Ogawa, *Chem. Soc. Rev.*, (1994) 397–407; G. Magnusson, *Adv. Drug Del. Rev.*, 13 (1994) 267–284, and refs. cited therein.
- [21] J. Kerékgyártó, J.G.M. van der Ven, A. Lipták, J.P. Kamerling, and J.F.G. Vliegenthart, *Carbohydr. Res.*, 238 (1993) 135–145.
- [22] G. Catalani, F. Colonni, and A. Marra, *Carbohydr. Res.*, 182 (1988) 297–300.
- [23] Y. Ito and T. Ogawa, Agric. Biol. Chem., 50 (1986) 3227-3230.
- [24] N.M. Spijker, C.A. Keuning, M. Hooglugt, G.H. Veeneman, and C.A.A. van Boeckel, *Tetrahedron*, 52 (1996) 5945–5960.
- [25] O. Mitsunobu, Synthesis, (1981) 1–28.
- [26] G.H. Veeneman, S.H. van Leeuwen, and J.H. van Boom, Tetrahedron Lett., 31 (1990) 1331–1334; P. Konradsson, U.E. Udodong, and B. Fraser-Reid, Tetrahedron Lett., 31 (1990) 4313–4316.
- [27] A. Marra and P. Sinaÿ, Carbohydr. Res., 187 (1989) 35-42
- [28] H. Lönn and K. Stenvall, *Tetrahedron Lett.*, 33 (1992) 115–116.
- [29] K. Okamoto, T. Kondo, and T. Goto, *Bull. Chem. Soc. Jpn.*, 60 (1987) 637–643.
- [30] A. Hasegawa, H. Ohki, T. Nagahama, H. Ishida, and M. Kiso, Carbohydr. Res., 212 (1991) 277-281.
- [31] T.J. Martin and R.R. Schmidt, *Tetrahedron Lett.*, 33 (1992) 6123–6126.

- [32] H. Paulsen and A. Bünsch, *Carbohydr. Res.*, 100 (1982) 143-167.
- [33] R.R. Schmidt and A. Toepfer, *Tetrahedron Lett.*, 32 (1991) 3353-3356.
- [34] J.-C. Jacquinet and H. Paulsen, *Tetrahedron Lett.*, 22 (1981) 1387-1390.
- [35] S. Nunomura, Y. Matsuzaki, Y. Ito, and T. Ogawa, *Pure Appl. Chem.*, 66 (1994) 2123–2126.
- [36] U. Ellervik and G. Magnusson, Carbohydr. Res., 280 (1996) 251–260.
- [37] G. Grundler and R.R. Schmidt, *Carbohydr. Res.*, 135 (1985) 203–218.
- [38] F. Elsinger, J. Schreiber, and A. Eschenmoser, *Helv. Chim. Acta*, 43 (1960) 113-118.
- [39] O. Kanie, S.C. Crawley, M.M. Palcic, and O. Hindsgaul, *Carbohydr. Res.*, 243 (1993) 139-164.
- [40] W. Stahl, U. Sprengard, G. Kretschmar, and H. Kunz, Angew. Chem. Int. Ed. Engl., 33 (1994) 2096–2098.
- [41] B.P. Czech and R.A. Bartsch, J. Org. Chem., 49 (1984) 4076-4078.

- [42] P.B. van Seeventer, M.A. Corsten, M.P. Sanders, J.P. Kamerling, and J.F.G. Vliegenthart, *Carbohydr. Res.*, 299 (1997) 171-179.
- [43] F. Dasgupta and P.J. Garegg, Carbohydr. Res., 177 (1988) C13-C17.
- [44] R.U. Lemieux, T. Takeda, and B.Y. Chung, ACS Symp. Ser., 39 (1976) 90-115.
- [45] B.A. Silwanis, R.I. El-Sokkay, M.A. Nashed, and H. Paulsen, J. Carbohydr. Chem., 10 (1991) 1067-1078.
- [46] S.B. Levery, Glycoconjugate J., 8 (1991) 484–492, and refs cited therein.
- [47] H. Wolff, in R. Adams (Ed.), Organic Reactions, Vol. 3, Wiley and Sons, New York, 1946, pp 307– 336.
- [48] D.J.M. van der Vleugel, F.R. Wasserburg, J.W. Zwikker, and J.F.G. Vliegenthart, Carbohydr. Res., 104 (1982) 221–233.